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Abstract: This work reports the effect of tin (Sn) doping on the infrared (IR) and terahertz (THz)
properties of vanadium dioxide (VO2) films. The films were grown by hydrothermal synthesis with a
post-annealing process and then fully characterized by X-ray diffraction (XRD), Raman spectroscopy,
scanning electron microscopy (SEM), and temperature-controlled electrical resistivity as well as IR
and THz spectroscopy techniques. Utilizing (NH4)2SnF6 as a Sn precursor allows the preparation of
homogeneous Sn-doped VO2 films. Doping of VO2 films with Sn led to an increase in the thermal
hysteresis width while conserving the high modulation depth in the mid-IR regime, which would
be beneficial for the applications of VO2 films in IR memory devices. A further analysis shows
that Sn doping of VO2 films significantly affects the temperature-dependent THz optical properties,
in particular leading to the suppression of the temperature-driven THz transmission modulation.
These results indicate Sn-doped VO2 films as a promising material for the development of switchable
IR/THz dichroic components.
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1. Introduction

The mid-infrared (2–20 µm wavelength range) spectral region attracts attention from
both scientific and industrial sectors due to the availability of multiple atmospheric win-
dows and its technological potential in thermal imaging [1], free space communications [2],
and chemical and biological molecular sensing [3,4] because of the fingerprint vibrational
and rotational motions of molecules within this spectral region. Full utilization of mid-
infrared radiation’s potential still requires active optical components. Phase change materi-
als such as best known as vanadium dioxide (VO2) can also be useful for the development
of mid-infrared photonic applications, especially when combined with resonant plasmonic
structures. In recent years, VO2 has been widely used as the basis of active metamaterials
operating in the mid-infrared range [5–11].

VO2-based devices’ functional performance significantly depends on the morphology,
preparation methods, and doping of VO2 films [12]. The most remarkable property of VO2
is the multi-stimulus-induced [13] reversible phase transition from a dielectric to a metallic
state [14]. This metal–insulator transition (MIT) leads to an abrupt variation in its electric,
thermal, and optical properties [15]. There are four main criteria defining the performance
of the MIT in VO2: the phase transition amplitude, the phase transition sharpness, the
hysteresis width, and the state stability before and after phase transition. Element doping
enables tailoring of these key VO2 performances for application requirements [16].

The temperature of the MIT can be decreased by doping with high valance metal
ions (W6+, Mo6+, and Nb5+) [17–19] or increased by doping with low valence atoms
(Fe) [20] from its initial value for undoped VO2 of 68 ◦C according to the application
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requirements. Since the phase transition points for cooling and heating processes are
incompatible, this results in thermal hysteresis (∆TMIT). The thermal hysteresis width can
be reduced by doping with titanium [21], niobium [22], and tungsten [23] or increased
by doping with boron [23]. The phase transition sharpness is defined as the full width at
half maximum (FWHM) of the Gaussian fitted differential d(Tr)/d(T) versus temperature
curves. Commonly, VO2 element doping reduces the phase transition sharpness [24,25],
except for doping with SiO2 [26].

It was reported that Sn-doped VO2 films fabricated by hydrothermal synthesis with
SnCl4·5H2O as the tin precursor possess an enhanced visible light transmittance [27]. W-
Sn co-doped VO2 films exhibit an improved visible transmittance with a reduced MIT
temperature [28].

A dichroic optical component can provide the ability to manipulate radiation differ-
ently concerning its frequency band [29,30]. Among the dichroic elements demonstrated
thus far, conductive thin films such as indium tin oxide [31–33] and La-doped BaSnO3 [34]
have been utilized in near-infrared transparent/terahertz functional devices. However,
infrared functional devices with a high terahertz transparency still need to be explored.

In this paper, the potential of Sn-doped VO2 films prepared by hydrothermal synthesis
and a post-annealing process in temperature-driven mid-infrared and terahertz optical
modulation is determined. To reveal the effect of the VO2 dopant on the optical properties
in the mid-IR spectral range across the MIT, the Sn doping levels were varied. Given
the high modulation depth and increased thermal hysteresis width in the mid-IR range,
we envision the application of Sn-doped VO2 films for adaptive infrared camouflage and
optical memory-type devices. Moreover, the revealed temperature-dependent modulation
suppression in the THz range is helpful for the development of dichroic optical elements.

2. Experimental Details
2.1. Preparation Of Sn-Doped VO2 Samples

Sn-doped VO2 films were deposited on 0.5 mm single crystal r-cut sapphires substrates
polished on one-side (r-Al2O3 Monocrystal Co., Ltd., Stavropol, Russia) by hydrothermal
synthesis [35]. Vanadium precursors were synthesized using vanadium pentoxide (V2O5)
and oxalic acid (H2C2O4·2H2O) as starting materials. A mixture of ethylene glycol (EG)
and deionized (DI) water was selected as a solvent. Sn-doped vanadium dioxide was
obtained by adding hexafluorostannate ((NH4)2SnF6) as a doping agent.

For producing an aqueous V4+-containing solution, V2O5 and H2C2O4·2H2O were
mixed in a molar ratio of 1:3 in DI water with continuous magnetic stirring for 6 h at 80 °C.
Thereafter, the required amount of EG (DI water/EG = 1:1 V/V) was added. The calculated
amount of (NH4)2SnF6 was dissolved in a DI/EG solution of V4+. As a result, a precursor
solution with different concentrations of tin was obtained. Concentrations of 1% and 1.5%
of tin were chosen for the synthesis. This precursor was diluted with the DI/EG solvent to
obtain a V4+ cation concentration of 3.125 mmol/L.

Sn-doped VO2 (M1) films on r-Al2O3 substrates were synthesized with hydrothermal
deposition with a post-annealing process. Prior to deposition, r-Al2O3 crystals (0.55 × 1.5 cm2)
were cleaned with DI water and acetone. Then, the substrates were placed into a high-density 25
mL polyparaphenol (PPL)-lined hydrothermal synthesis autoclave reactor in a vertical position
using a Teflon holder. Thereafter, the precursor solution was transferred into the PPL cup with
a filling ratio of 0.60 and sealed hermetically in a stainless autoclave. The autoclave was kept
at 180 °C for 20 h and then cooled down to room temperature naturally. The films deposited
on the substrates were cleaned with DI water and acetone several times and dried for 30 min
at room temperature. Post-annealing was performed in an argon gas atmosphere (3 mbar, Ar
flow (3.5 L/h)) in two steps. The first step at 400 °C for 30 min was intended to remove any EG
residues. On the second annealing, the temperature was increased to 600 °C for 60 min.

Based on the Sn concentration, the samples were denoted as S0 (undoped VO2), S1
(1% Sn), and S2 (1.5% Sn).
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2.2. Characterization Studies

The phase purity and crystallinity of VO2 films were analyzed by X-ray diffraction
(XRD, Rigaku SmartLab) with Cu Kα (λ = 1.54046 Å). The diffraction data were recorded in
the 2θ range of 20–80° with a resolution of 0.02° at a speed of 5 °/min. The surface morphol-
ogy of the films and their thickness were characterized by scanning electron microscopy
(SEM) using a Carl Zeiss NVision 40 electron microscope. Raman scattering measurements
were performed using a Renishaw InVia spectrometer with a 514 nm 20 mW defocused ex-
citation laser source (20 µm spot) at room temperature. The electrical properties of the films
were measured with a standard four-probe method in the temperature range of 25–90 °C
using a Keithley 2700 multimeter. The temperature-dependent infrared transmittance
in the wavelength range of 1.5–8 µm was investigated using a Bruker Vertex 70 Fourier
spectrometer. Finally, the terahertz transmission in the frequency range of 0.1–1 THz was
measured using a Menlo Systems TERA K8 terahertz time-domain (THz-TDS) spectroscopy
system. All the temperature-dependent optical characterizations were performed with a
Peltier-based homemade temperature control system.

3. Results and Discussion
3.1. Structural and Morphological Analysis

Figure 1 shows surface morphology SEM images of Sn-doped VO2 films with different
Sn contents. Doped and undoped VO2 films exhibited uniform homogeneous coverage of
the substrate with quasi-spherical grains. Doping with Sn (Figure 1b,c) led to a significant
increase in the quasi-spherical grain size, while various doping levels had a minor effect on
film morphology.

Figure 1. SEM morphology view of the VO2 films: (a) S0, (b) S1, and (c) S2.

The SEM cross-sectional images shown in Figure 2 indicate that VO2 doping with Sn
leads to an increase in film thickness. All the doped films have a thickness lying in the
range of 170–200 nm, while the undoped VO2 film is 95 nm thick.

The crystalline structures of Sn-doped VO2 films on sapphire substrates were analyzed
by XRD measurements at room temperature as shown in Figure 3.

The XRD results show that no additional phase appears in the XRD pattern after
Sn doping. All obtained films are polycrystalline or 200 textured. The diffraction peaks
are typical of VO2(M), ICDD PDF#43-1051. This indicates that doping with Sn does not
significantly change the lattice constants of VO2 films. However, the XRD peak with an
angular position of 36.9° corresponding to the (200) VO2 (M1) crystalline plane slightly
shifts towards a lower angle with an increase in the Sn dopant.
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Figure 2. SEM cross-sectional view of the VO2 films: (a) S0, (b) S1, and (c) S2.

Figure 3. XRD spectra of undoped and Sn-doped VO2 films. The marker “*” indicates the reflection
from the stainless sample table.

The typical Raman signature of monoclinic VO2 (M1) was obtained for undoped and
Sn-doped VO2 samples (Figure 4).

Figure 4. Raman spectra of the sapphire substrate and undoped and Sn-doped VO2 films.
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Raman scattering peaks position were identified at 143 (Ag), 195 (Ag), 224 (Bg), 262
(Bg), 309 (Ag), 340 (Ag), 391 (Ag), 442 (Bg), 499 (Ag), and 614 (Ag) cm−1, which clearly
conforms with the typical pattern [36].

3.2. Electrical and IR Optical Properties

Figure 5 shows the resistance–temperature hysteresis loops of the undoped and Sn-
doped VO2 samples.

Figure 5. Electrical resistance of the VO2 films as a function of temperature during heating and
cooling cycles.

The resistance of the undoped sample dropped by almost 4 orders of magnitude
across the phase transition. Sn-doping of VO2 films results in an increase in the overall
resistance, MIT temperature growth, and widening of thermal hysteresis loops. Moreover,
with increasing Sn content, the magnitude of resistance variation tends to decrease. The
incorporation of isovalent Sn4+ ions into VO2 does not lead to significant changes in carrier
concentrations. However, doping of VO2 generally increases the defect concentration and
leads to a more distorted lattice, which as a consequence reduces the phase transition
amplitude [12].

Figure 6 represents the infrared transmission of the bare sapphire substrate and VO2
films on sapphire substrates during the heating and cooling processes. It should be noted
that the optical properties of the sapphire substrate between 20 °C and 90 °C do not show a
significant change as reported in [37].

Figure 6. Cont.
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Figure 6. Infrared transmission spectra of the undoped VO2 film (a,b), Sn-doped VO2 films (c–f) on
sapphire substrates during heating and cooling cycles, and the bare sapphire substrate (g).

The largest transmission variation takes place at 5.6 µm, which coincides with the
maximum substrate transmission. For further analysis, the hysteresis loops of IR transmis-
sion for undoped and Sn-doped VO2 films were obtained by collecting the transmittance
of films at a fixed wavelength of 5.6 µm as shown in Figure 7. The hysteresis loops of IR
transmission through VO2 films on the sapphire substrate were normalized by transmission
through the bare sapphire substrate. In order to quantitatively investigate the IR properties
of VO2 films under a phase transition, the corresponding first-order derivative curves
(dTr/dT) of transmission variation were calculated in the insets of Figure 7.



Ceramics 2023, 6 1297

Figure 7. Normalized maximum power transmission at 5.6 µm through undoped (a) and Sn-doped
(b,c) VO2 films on a sapphire substrate during heating and cooling cycles.
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The temperature-dependent mid-infrared properties of VO2 films are similar to their
electrical properties. To gain insight into the phase transition performance of VO2 films
with different Sn contents, several criteria were determined. The phase transition tem-
perature was defined as the minima of the differential curves for heating (TH) and cool-
ing (TC) processes. The hysteresis width (∆H) of the phase transition was defined as
the difference between phase transition temperatures during heating and cooling pro-
cesses (∆H = TH − TC). The phase transition sharpness (∆T) was characterized by the full
width at half maximum (FWHM) of the dTr/dT versus the temperature curve. A smaller
value of ∆T means a sharper phase transition. The modulation depth was defined as
MD = (Tcold − Thot)/Tcold × 100%, where Tcold and Thot are the IR transmission before and
after the phase transition, respectively. The detailed parameters of the IR hysteresis loops
are summarized in Table 1.

Table 1. Parameters of hysteresis loops at 5.6 µm for VO2 films.

Sample MD, % ∆H, °C ∆T , °C

S0 93.7 8.5 7.2
S1 95 14 6.2
S2 96.8 17.5 5.7

As seen from Table 1, with increasing Sn content, the width of the thermal hysteresis
loop (∆H) is significantly raised from 8.5 °C to 17.5 °C (sample S2). Moreover, the MD is
increased from 93.7% to 96.8% and the ∆T is reduced from 7.2 °C to 5.7 °C when the Sn
content increases from 0% to 1.5%. Previous reports have indicated that the grain size and
grain boundary play important roles in tailoring the thermal hysteresis width [12]. Such a
large hysteresis width is preferable for the development of optical-memory-type devices
with a stationary memory state [38].

3.3. Thz Optical Properties

The optical transmission of VO2 films with different Sn doping contents in the THz
range of 0.1–1 THz was measured at 25 °C and 85 °C, respectively. The corresponding
substrate-normalized THz spectra are shown in Figure 8.

Figure 8. Normalized terahertz transmission spectra through undoped (a) and Sn-doped VO2 films
on a sapphire substrate (b,c).

The only undoped sample S0 demonstrates an obvious change in THz transmission
between the two states (Figure 8a). With the addition of Sn, the amplitude modulation of
THz transmission falls from an average of 49.5% to 2.9% and 10.3% for 1% and 1.5% Sn
contents, respectively. An optimal Sn doping level of 1% allows for achieving the largest
THz modulation damping. This is consistent with the observed reduction in conductivity
after the phase transition for Sn-doped VO2 films as seen from the electrical behavior in
Figure 5. A similar relationship between electrical resistance and THz transmission has also
been reported in [39,40]. This phenomenon can be attributed to the emergence of barriers
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between VO2 grains upon dopant insertion. At the same time, the IR optical properties are
less sensitive to the interface between the grains. Therefore, the phase transition amplitude
for IR transmission varies by a small amount with Sn doping of VO2. The observed
reduction in the temperature-driven THz amplitude modulation in conjunction with high
IR transmission modulation for Sn-doped VO2 films can be considered as a basis for the
development of dichroic optical elements. This feature can be utilized for the separation of
generated THz radiation from the initial mid-infrared spectral part in intense THz pulse
generation using two-color filamentation techniques [41,42].

4. Conclusions

In summary, a series of VO2 films with different Sn doping contents were prepared on a
sapphire substrate by hydrothermal synthesis and a post-annealing process. It was revealed
that using (NH4)2SnF6 as a Sn precursor allows producing homogeneous Sn-doped VO2
films. For IR transmission, the hysteresis width of VO2 films can be increased to 17.5 °C by
Sn doping. For THz transmission, a suppression of the temperature-driven modulation after
Sn doping is observed. This work provides a new mode for the development of dichroic
optical components, e.g., a temperature-switchable infrared element with transparency in
the THz range.
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